
Technische Universität München

Fundamental Algorithms
Chapter 2: Sorting

Jan Křetı́nský

Winter 2017/18

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 1

Technische Universität München

Part I

Simple Sorts

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 2

Technische Universität München

The Sorting Problem

Definition

Sorting is required to order a given sequence of elements, or more
precisely:

Input : a sequence of n elements a1,a2, . . . ,an

Output : a permutation (reordering) a′1,a
′
2, . . . ,a

′
n of the input

sequence, such that a′1 ≤ a′2 ≤ · · · ≤ a′n.

• we will assume the elements a1,a2, . . . ,an to be integers
(or any element/data type on which a total order ≤ is defined)

• a sorting algorithm may output the permuted data or also the
permuted set of indices

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 3

Technische Universität München

Insertion Sort

Idea: sorting by inserting
• successively generate ordered sequences of the first j numbers:

j = 1, j = 2, . . . , j = n
• in each step, j → j + 1, one additional integer has to be inserted

into an already ordered sequence

Data Structures:
• an array A[1..n] that contains the sequence a1 (in A[1]), . . . , an

(in A[n]).
• numbers are sorted in place:

output sequence will be stored in A itself
(hence, content of A is changed)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 4

Technische Universität München

Insertion Sort – Implementation

InsertionSort (A:Array[1..n]) {

for j from 2 to n {
// insert A[j] into sequence A[1..j−1]

key := A[j];

i := j−1; // initialize i for while loop
while i>=1 and A[i]>key {

A[i+1] := A[i];
i := i−1;

}
A[i+1] := key;

}
}

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 5

Technische Universität München

Correctness of InsertionSort
Loop invariant:

Before each iteration of the for-loop, the subarray A[1..j-1] consists of
all elements originally in A[1..j-1], but in sorted order.

Initialization:
• loops starts with j=2;

hence, A[1..j-1] consists of the element A[1] only
• A[1] contains only one element, A[1], and is therefore sorted.

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 6

Technische Universität München

Correctness of InsertionSort
Loop invariant:

Before each iteration of the for-loop, the subarray A[1..j-1] consists of
all elements originally in A[1..j-1], but in sorted order.

Maintenance:
• assume that the while loop works correctly

(or prove this using an additional loop invariant):
• after the while loop, i contains the largest index for which A[i]

is smaller than the key
• A[i+2..j] contains the (sorted) elements previously stored in

A[i+1..j-1]; also: A[i+1] and all elements in A[i+2..j] are ≥ key
• the key value, A[j], is thus correctly inserted as element A[i+1]

(overwrites the duplicate value A[i+1])
• after execution of the loop body, A[1..j] is sorted
• thus, before the next iteration (j:=j+1), A[1..j-1] is sorted

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 6

Technische Universität München

Correctness of InsertionSort
Loop invariant:

Before each iteration of the for-loop, the subarray A[1..j-1] consists of
all elements originally in A[1..j-1], but in sorted order.

Termination:
• The for-loop terminates when j exceeds n (i.e., j=n+1)
• Thus, at termination, A[1 .. (n+1)-1] = A[1..n] is sorted and

contains all original elements

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 6

Technische Universität München

Insertion Sort – Number of Comparisons

InsertionSort (A:Array[1..n]) {

for j from 2 to n {

key := A[j];

i := j−1;
while i>=1 and A[i]>key {

A[i+1] := A[i];
i := i−1;

}
A[i+1] := key;

}
}

n-1 iterations

tj iterations
→ tj comparisons

A[i] > key

⇒
n∑

j=2
tj comparisons

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 7

Technische Universität München

Insertion Sort – Number of Comparisons (2)

• counted number of comparisons: TIS =
n∑

j=2
tj

• where tj is the number of iterations of the while loop
(which is, of course, unknown)

• good estimate for the run time, if the comparison is the most
expensive operation (note: replace “ i>=1” by for loop)

Analysis
• what is the “best case”?
• what is the “worst case”?

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 8

Technische Universität München

Insertion Sort – Number of Comparisons (2)

• counted number of comparisons: TIS =
n∑

j=2
tj

• where tj is the number of iterations of the while loop
(which is, of course, unknown)

• good estimate for the run time, if the comparison is the most
expensive operation (note: replace “ i>=1” by for loop)

Analysis of the “best case”:
• in the best case, tj = 1 for all j
• happens only, if A[1..n] is already sorted

⇒ TIS(n) =
n∑

j=2

1 = n − 1 ∈ Θ(n)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 8

Technische Universität München

Insertion Sort – Number of Comparisons (2)

• counted number of comparisons: TIS =
n∑

j=2
tj

• where tj is the number of iterations of the while loop
(which is, of course, unknown)

• good estimate for the run time, if the comparison is the most
expensive operation (note: replace “ i>=1” by for loop)

Analysis of the “worst case”:
• in the worst case, tj = j − 1 for all j
• happens, if A[1..n] is already sorted in opposite order

⇒ TIS(n) =
n∑

j=2

(j − 1) =
1
2

n(n − 1) ∈ Θ(n2)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 8

Technische Universität München

Insertion Sort – Number of Comparisons (2)

• counted number of comparisons: TIS =
n∑

j=2
tj

• where tj is the number of iterations of the while loop
(which is, of course, unknown)

• good estimate for the run time, if the comparison is the most
expensive operation (note: replace “ i>=1” by for loop)

Analysis of the “average case”:
• best case analysis: TIS(n) ∈ Θ(n)

• worst case analysis: TIS(n) ∈ Θ(n2)

⇒What will be the ”typical” (average, expected) case?

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 8

Technische Universität München

Running Time and Complexity
“Run(ning)Time”

• the notation T (n) suggest a “time”, such as run(ning) time of an
algorithm, which depends on the input (size) n

• in practice: we need a precise model how long each operation of
our programmes takes→ very difficult on real hardware!

• we will therefore determine the number of operations that
determine the run time, such as:

– number of comparisons (sorting, e.g.)
– number of arithmetic operations (Fibonacci, e.g.)
– number of memory accesses

“Complexity”
• characterises how the run time depends on the input (size),

typically expressed in terms of the Θ-notation
• “algorithm xyz has linear complexity”→ run time is Θ(n)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 9

Technische Universität München

Running Time and Complexity
“Run(ning)Time”

• the notation T (n) suggest a “time”, such as run(ning) time of an
algorithm, which depends on the input (size) n

• in practice: we need a precise model how long each operation of
our programmes takes→ very difficult on real hardware!

• we will therefore determine the number of operations that
determine the run time, such as:

– number of comparisons (sorting, e.g.)
– number of arithmetic operations (Fibonacci, e.g.)
– number of memory accesses

“Complexity”
• characterises how the run time depends on the input (size),

typically expressed in terms of the Θ-notation
• “algorithm xyz has linear complexity”→ run time is Θ(n)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 9

Technische Universität München

Average Case Complexity

Definition (expected running time)

Let X (n) be the set of all possible input sequences of length n, and let
P : X (n)→ [0,1] be a probability function such that P(x) is the
probability that the input sequence is x .
Then, we define

T̄ (n) =
∑

x∈X(n)

P(x)T (x)

as the expected running time of the algorithm.

Comments:
• we require an exact probability distribution

(for InsertionSort, we could assume that all possible sequences
have the same probability)

• we need to be able to determine T (x) for any sequence x
(usually much too laborious to determine)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 10

Technische Universität München

Average Case Complexity of Insertion Sort

Heuristic estimate:
• we assume that we need j

2 steps in every iteration:

⇒ T̄IS(n)
(?)
≈

n∑
j=2

j
2

=
1
2

n∑
j=2

j ∈ Θ(n2)

• note: j
2 isn’t even an integer . . .

• Just considering the number of comparisons of the
“average case” can lead to quite wrong results!

in general E(T (n)) 6= T (“E(n)”)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 11

Technische Universität München

Average Case Complexity of Insertion Sort

Heuristic estimate:
• we assume that we need j

2 steps in every iteration:

⇒ T̄IS(n)
(?)
≈

n∑
j=2

j
2

=
1
2

n∑
j=2

j ∈ Θ(n2)

• note: j
2 isn’t even an integer . . .

• Just considering the number of comparisons of the
“average case” can lead to quite wrong results!

in general E(T (n)) 6= T (“E(n)”)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 11

Technische Universität München

Average Case Complexity of Insertion Sort

Heuristic estimate:
• we assume that we need j

2 steps in every iteration:

⇒ T̄IS(n)
(?)
≈

n∑
j=2

j
2

=
1
2

n∑
j=2

j ∈ Θ(n2)

• note: j
2 isn’t even an integer . . .

• Just considering the number of comparisons of the
“average case” can lead to quite wrong results!

in general E(T (n)) 6= T (“E(n)”)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 11

Technische Universität München

Bubble Sort

BubbleSort(A:Array[1..n]) {
for i from 1 to n do {

for j from n downto i+1 do {
if A[j] < A[j−1]
then exchange A[j] and A[j−1]

}
}

}

Basic ideas:
• compare neighboring elements only
• exchange values if they are not in sorted order
• repeat until array is sorted (here: pessimistic loop choice)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 12

Technische Universität München

Bubble Sort – Homework

Prove correctness of Bubble Sort:
• find invariant for i-loop
• find invariant for j-loop

Number of comparisons in Bubble Sort:
• best/worst/average case?

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 13

Technische Universität München

Part II

Mergesort and Quicksort

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 14

Technische Universität München

Mergesort

Basic Idea: divide and conquer
• Divide the problem into two (or more) subproblems:
→ split the array into two arrays of equal size

• Conquer the subproblems by solving them recursively:
→ sort both arrays using the sorting algorithm

• Combine the solutions of the subproblems:
→ merge the two sorted arrays to produce the entire sorted array

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 15

Technische Universität München

Combining Two Sorted Arrays: Merge

Merge (L:Array[1..p], R:Array[1..q], A:Array[1..n]) {
// merge the sorted arrays L and R into A (sorted)
// we presume that n=p+q

i :=1; j :=1:
for k from 1 to n do {

if i > p
then { A[k]:=R[j]; j=j+1; }

else if j > q
then { A[k]:=L[i]; i := i+1; }

else if L[i] < R[j]
then { A[k]:=L[i]; i := i+1; }
else { A[k]:=R[j]; j := j+1; }

}
}

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 16

Technische Universität München

Correctness and Run Time of Merge
Loop invariant:
Before each cycle of the for loop:

• A has the k-1 smallest elements of L and R already merged,
(i.e. in sorted order and at indices 1, . . . , k-1);

• L[i] and R[j] are the smallest elements of L and R that have not
been copied to A yet
(i.e. L[1..i-1] and R[1..j-1] have been merged to A)

Run time:
TMerge(n) ∈ Θ(n)

• for loop will be executed exactly n times
• each loop contains constant number of commands:

• exactly 1 copy statement
• exactly 1 increment statement
• 1–3 comparisons

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 17

Technische Universität München

MergeSort

MergeSort(A:Array[1..n]) {
if n > 1 then {

m := floor(n /2);
create array L [1... m];
for i from 1 to m do { L[i] := A[i]; }

create array R [1... n−m];
for i from 1 to n−m do { R[i] := A[m+i]; }

MergeSort(L);
MergeSort(R);

Merge(L,R,A);
}

}

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 18

Technische Universität München

Number of Comparisons in MergeSort

• Merge performs exactly n element copies on n elements
• Merge performs at most c · n comparisons on n elements
• MergeSort itself does not contain any comparisons between

elements; all comparisons done in Merge
⇒ number of element-copy operations for the entire MergeSort

algorithms can be specified by a recurrence
(includes n copy operations for splitting the arrays):

CMS(n) =

{
0 if n ≤ 1
CMS

(⌊ n
2

⌋)
+ CMS

(
n −

⌊ n
2

⌋)
+ 2n if n ≥ 2

⇒ number of comparisons for the entire MergeSort algorithm:

TMS(n) ≤
{

0 if n ≤ 1
TMS

(⌊ n
2

⌋)
+ TMS

(
n −

⌊ n
2

⌋)
+ cn if n ≥ 2

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 19

Technische Universität München

Number of Comparisons in MergeSort (2)

Assume n = 2k , c constant:

TMS(2k) ≤ TMS

(
2k−1

)
+ TMS

(
2k−1

)
+ c · 2k

≤ 2TMS

(
2k−1

)
+ 2k c

≤ 22TMS

(
2k−2

)
+ 2 · 2k−1c + 2k c

≤ . . .

≤ 2k TMS
(
20)+ 2k−1 · 21c + . . . + 2j · 2k−jc

+ . . . + 2 · 2k−1c + 2k c

≤
k∑

j=1

2k c = ck · 2k = cn log2 n ∈ O(n log n)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 20

Technische Universität München

Number of Comparisons in MergeSort (2)

Assume n = 2k , c constant:

TMS(2k) ≤ TMS

(
2k−1

)
+ TMS

(
2k−1

)
+ c · 2k

≤ 2TMS

(
2k−1

)
+ 2k c

≤ 22TMS

(
2k−2

)
+ 2 · 2k−1c + 2k c

≤ . . .

≤ 2k TMS
(
20)+ 2k−1 · 21c + . . . + 2j · 2k−jc

+ . . . + 2 · 2k−1c + 2k c

≤
k∑

j=1

2k c = ck · 2k = cn log2 n ∈ O(n log n)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 20

Technische Universität München

Number of Comparisons in MergeSort (2)

Assume n = 2k , c constant:

TMS(2k) ≤ TMS

(
2k−1

)
+ TMS

(
2k−1

)
+ c · 2k

≤ 2TMS

(
2k−1

)
+ 2k c

≤ 22TMS

(
2k−2

)
+ 2 · 2k−1c + 2k c

≤ . . .

≤ 2k TMS
(
20)+ 2k−1 · 21c + . . . + 2j · 2k−jc

+ . . . + 2 · 2k−1c + 2k c

≤
k∑

j=1

2k c = ck · 2k = cn log2 n ∈ O(n log n)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 20

Technische Universität München

Quicksort

Basic Idea: divide and conquer
• Divide the input array A[p..r] into parts A[p..q] and A[q+1 .. r],

such that every element in A[q+1 .. r] is larger than all elements
in A[p .. q].

• Conquer: sort the two arrays A[p..q] and A[q+1 .. r]
• Combine: if the divide and conquer steps are performed in

place, then no further combination step is required.

Partitioning using a pivot element:
• all elements that are smaller than the pivot element should go

into the “smaller” partition (A[p..q])
• all elements that are larger than the pivot element should go into

the “larger” partition (A[q+1..r])

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 21

Technische Universität München

Quicksort

Basic Idea: divide and conquer
• Divide the input array A[p..r] into parts A[p..q] and A[q+1 .. r],

such that every element in A[q+1 .. r] is larger than all elements
in A[p .. q].

• Conquer: sort the two arrays A[p..q] and A[q+1 .. r]
• Combine: if the divide and conquer steps are performed in

place, then no further combination step is required.

Partitioning using a pivot element:
• all elements that are smaller than the pivot element should go

into the “smaller” partition (A[p..q])
• all elements that are larger than the pivot element should go into

the “larger” partition (A[q+1..r])

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 21

Technische Universität München

Partitioning the Array (Hoare’s Algorithm)

Partition (A:Array[p..r]) : Integer {
// x is the pivot (chosen as first element):
x := A[p];
// partitions grow towards each other
i := p−1; j := r+1; // (partition boundaries)
while true do { // i<j: partitions haven’t met yet

// leave large elements in right partition
do { j := j−1; } while A[j]>x;
// leave small elements in left partition
do { i := i+1; } while A[i]<x;
// swap the two first ”wrong” elements
if i < j
then exchange A[i] and A[j];
else return j ;

}
}

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 22

Technische Universität München

Time Complexity of Partition

How many statements are executed by the nested while loops?

• monitor increments/decrements of i and j
• after n := r − p increments/decrements, i and j have the same

value
⇒ Θ(n) comparisons with the pivot
⇒ O(n) element exchanges

Hence: TPart(n) ∈ Θ(n)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 23

Technische Universität München

Time Complexity of Partition

How many statements are executed by the nested while loops?
• monitor increments/decrements of i and j
• after n := r − p increments/decrements, i and j have the same

value
⇒ Θ(n) comparisons with the pivot
⇒ O(n) element exchanges

Hence: TPart(n) ∈ Θ(n)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 23

Technische Universität München

Implementation of QuickSort

QuickSort (A:Array[p..r])
{

if p>=r then return;
// only proceed, if A has at least 2 elements:
q := Partition (A);
QuickSort (A[p..q]);
QuickSort (A[q+1..r]);

}

Homework:
• prove correctness of Partition
• prove correctness of QuickSort

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 24

Technische Universität München

Time Complexity of QuickSort
Best Case:

• assume that all partitions are split exactly into two halves:

T best
QS (n) = 2T best

QS

(n
2

)
+ Θ(n)

• analogous to MergeSort:

T best
QS (n) ∈ Θ(n log n)

Worst Case:
• Partition will always produce one partition with only 1 element:

T worst
QS (n) = T worst

QS (n − 1) + T worst
QS (1) + Θ(n)

= T worst
QS (n − 1) + Θ(n) = T worst

QS (n − 2) + Θ(n − 1) + Θ(n)

= . . . = Θ(1) + . . . + Θ(n − 1) + Θ(n) ∈ Θ(n2)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 25

Technische Universität München

Time Complexity of QuickSort
Best Case:

• assume that all partitions are split exactly into two halves:

T best
QS (n) = 2T best

QS

(n
2

)
+ Θ(n)

• analogous to MergeSort:

T best
QS (n) ∈ Θ(n log n)

Worst Case:
• Partition will always produce one partition with only 1 element:

T worst
QS (n) = T worst

QS (n − 1) + T worst
QS (1) + Θ(n)

= T worst
QS (n − 1) + Θ(n) = T worst

QS (n − 2) + Θ(n − 1) + Θ(n)

= . . . = Θ(1) + . . . + Θ(n − 1) + Θ(n) ∈ Θ(n2)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 25

Technische Universität München

Time Complexity of QuickSort – Special Cases?

What happens if:
• A is already sorted?

→ partition sizes always 1 and n-1⇒ Θ(n2)

• A is sorted in reverse order?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• one partition has always at most a elements (for a fixed a)?
→ same complexity as a = 1⇒ Θ(n2)

• partition sizes are always n(1− a) and na with 0 < a < 1?
→ same complexity as best case⇒ Θ(n log n)

Questions:
• What happens in the “usual” case?
• Can we force the best case?

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 26

Technische Universität München

Time Complexity of QuickSort – Special Cases?

What happens if:
• A is already sorted?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• A is sorted in reverse order?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• one partition has always at most a elements (for a fixed a)?
→ same complexity as a = 1⇒ Θ(n2)

• partition sizes are always n(1− a) and na with 0 < a < 1?
→ same complexity as best case⇒ Θ(n log n)

Questions:
• What happens in the “usual” case?
• Can we force the best case?

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 26

Technische Universität München

Time Complexity of QuickSort – Special Cases?

What happens if:
• A is already sorted?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• A is sorted in reverse order?

→ partition sizes always 1 and n-1⇒ Θ(n2)

• one partition has always at most a elements (for a fixed a)?
→ same complexity as a = 1⇒ Θ(n2)

• partition sizes are always n(1− a) and na with 0 < a < 1?
→ same complexity as best case⇒ Θ(n log n)

Questions:
• What happens in the “usual” case?
• Can we force the best case?

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 26

Technische Universität München

Time Complexity of QuickSort – Special Cases?

What happens if:
• A is already sorted?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• A is sorted in reverse order?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• one partition has always at most a elements (for a fixed a)?
→ same complexity as a = 1⇒ Θ(n2)

• partition sizes are always n(1− a) and na with 0 < a < 1?
→ same complexity as best case⇒ Θ(n log n)

Questions:
• What happens in the “usual” case?
• Can we force the best case?

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 26

Technische Universität München

Time Complexity of QuickSort – Special Cases?

What happens if:
• A is already sorted?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• A is sorted in reverse order?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• one partition has always at most a elements (for a fixed a)?

→ same complexity as a = 1⇒ Θ(n2)

• partition sizes are always n(1− a) and na with 0 < a < 1?
→ same complexity as best case⇒ Θ(n log n)

Questions:
• What happens in the “usual” case?
• Can we force the best case?

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 26

Technische Universität München

Time Complexity of QuickSort – Special Cases?

What happens if:
• A is already sorted?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• A is sorted in reverse order?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• one partition has always at most a elements (for a fixed a)?
→ same complexity as a = 1⇒ Θ(n2)

• partition sizes are always n(1− a) and na with 0 < a < 1?
→ same complexity as best case⇒ Θ(n log n)

Questions:
• What happens in the “usual” case?
• Can we force the best case?

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 26

Technische Universität München

Time Complexity of QuickSort – Special Cases?

What happens if:
• A is already sorted?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• A is sorted in reverse order?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• one partition has always at most a elements (for a fixed a)?
→ same complexity as a = 1⇒ Θ(n2)

• partition sizes are always n(1− a) and na with 0 < a < 1?

→ same complexity as best case⇒ Θ(n log n)

Questions:
• What happens in the “usual” case?
• Can we force the best case?

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 26

Technische Universität München

Time Complexity of QuickSort – Special Cases?

What happens if:
• A is already sorted?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• A is sorted in reverse order?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• one partition has always at most a elements (for a fixed a)?
→ same complexity as a = 1⇒ Θ(n2)

• partition sizes are always n(1− a) and na with 0 < a < 1?
→ same complexity as best case⇒ Θ(n log n)

Questions:
• What happens in the “usual” case?
• Can we force the best case?

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 26

Technische Universität München

Time Complexity of QuickSort – Special Cases?

What happens if:
• A is already sorted?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• A is sorted in reverse order?
→ partition sizes always 1 and n-1⇒ Θ(n2)

• one partition has always at most a elements (for a fixed a)?
→ same complexity as a = 1⇒ Θ(n2)

• partition sizes are always n(1− a) and na with 0 < a < 1?
→ same complexity as best case⇒ Θ(n log n)

Questions:
• What happens in the “usual” case?
• Can we force the best case?

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 26

Technische Universität München

Randomized QuickSort

RandPartition (A: Array [p .. r]): Integer {
// choose random integer i between p and r
i := rand(p,r);
// make A[i] the (new) Pivot element:
exchange A[i] and A[p];
// call Partition with new pivot element
q := Partition (A);
return q;

}

RandQuickSort (A:Array [p..r]) {
if p >= r then return;
q := RandPartition(A);
RandQuickSort (A[p...q]);
RandQuickSort (A[q+1 ..r]);

}

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 27

Technische Universität München

Time Complexity of RandQuickSort

Best/Worst-case complexity?

• RandQuickSort may still produce the worst (or best) partition in
each step

• worst case: Θ(n2)

• best case: Θ(n log n)

However:
• it is not determined which input sequence (sorted order, reverse

order) will lead to worst case behavior (or best case behavior);
• any input sequence might lead to the worst case or the best

case, depending on the random choice of pivot elements.
Thus: only the average-case complexity is of interest!

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 28

Technische Universität München

Time Complexity of RandQuickSort

Best/Worst-case complexity?
• RandQuickSort may still produce the worst (or best) partition in

each step
• worst case: Θ(n2)

• best case: Θ(n log n)

However:
• it is not determined which input sequence (sorted order, reverse

order) will lead to worst case behavior (or best case behavior);
• any input sequence might lead to the worst case or the best

case, depending on the random choice of pivot elements.
Thus: only the average-case complexity is of interest!

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 28

Technische Universität München

Time Complexity of RandQuickSort

Best/Worst-case complexity?
• RandQuickSort may still produce the worst (or best) partition in

each step
• worst case: Θ(n2)

• best case: Θ(n log n)

However:
• it is not determined which input sequence (sorted order, reverse

order) will lead to worst case behavior (or best case behavior);
• any input sequence might lead to the worst case or the best

case, depending on the random choice of pivot elements.
Thus: only the average-case complexity is of interest!

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 28

Technische Universität München

Average Case Complexity of RandQuickSort
Assumptions:

• we compute T̄RQS (A),
i.e., the expected run time of RandQuickSort for a given input A

• rand(p,r) will return uniformly distributed random numbers
(all pivot elements have the same probability)

• all elements of A have different size: A[i] 6= A[j]

Basic Idea:
• only count number of comparisons between elements of A
• let zi be the i-th smallest element in A
• define

Xij =

{
1 zi is compared to zj
0 otherwise

• random variable TRQS(A) =
∑

i<j Xij

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 29

Technische Universität München

Average Case Complexity of RandQuickSort
Assumptions:

• we compute T̄RQS (A),
i.e., the expected run time of RandQuickSort for a given input A

• rand(p,r) will return uniformly distributed random numbers
(all pivot elements have the same probability)

• all elements of A have different size: A[i] 6= A[j]

Basic Idea:
• only count number of comparisons between elements of A
• let zi be the i-th smallest element in A
• define

Xij =

{
1 zi is compared to zj
0 otherwise

• random variable TRQS(A) =
∑

i<j Xij

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 29

Technische Universität München

Average Case Complexity of RandQuickSort
Expected Number of Comparisons:

T̄RQS(A) = E
[∑

i<j
Xij

]

=
∑

i<j
E
[
Xij
]

=
∑

i<j
Pr
[
zi is compared to zj

]
• suppose an element between zi and zj is chosen as pivot before

zi or zj are chosen as pivots; then zi and zj are never compared
• if either zi or zj is chosen as the first pivot in the range zi , . . . , zj ,

then zi will be compared to zj
• this happens with probability

2
j − i + 1

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 30

Technische Universität München

Average Case Complexity of RandQuickSort
Expected Number of Comparisons:

T̄RQS(A) = E
[∑

i<j
Xij

]
=
∑

i<j
E
[
Xij
]

=
∑

i<j
Pr
[
zi is compared to zj

]
• suppose an element between zi and zj is chosen as pivot before

zi or zj are chosen as pivots; then zi and zj are never compared
• if either zi or zj is chosen as the first pivot in the range zi , . . . , zj ,

then zi will be compared to zj
• this happens with probability

2
j − i + 1

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 30

Technische Universität München

Average Case Complexity of RandQuickSort
Expected Number of Comparisons:

T̄RQS(A) = E
[∑

i<j
Xij

]
=
∑

i<j
E
[
Xij
]

=
∑

i<j
Pr
[
zi is compared to zj

]

• suppose an element between zi and zj is chosen as pivot before
zi or zj are chosen as pivots; then zi and zj are never compared

• if either zi or zj is chosen as the first pivot in the range zi , . . . , zj ,
then zi will be compared to zj

• this happens with probability
2

j − i + 1

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 30

Technische Universität München

Average Case Complexity of RandQuickSort
Expected Number of Comparisons:

T̄RQS(A) = E
[∑

i<j
Xij

]
=
∑

i<j
E
[
Xij
]

=
∑

i<j
Pr
[
zi is compared to zj

]
• suppose an element between zi and zj is chosen as pivot before

zi or zj are chosen as pivots; then zi and zj are never compared

• if either zi or zj is chosen as the first pivot in the range zi , . . . , zj ,
then zi will be compared to zj

• this happens with probability
2

j − i + 1

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 30

Technische Universität München

Average Case Complexity of RandQuickSort
Expected Number of Comparisons:

T̄RQS(A) = E
[∑

i<j
Xij

]
=
∑

i<j
E
[
Xij
]

=
∑

i<j
Pr
[
zi is compared to zj

]
• suppose an element between zi and zj is chosen as pivot before

zi or zj are chosen as pivots; then zi and zj are never compared
• if either zi or zj is chosen as the first pivot in the range zi , . . . , zj ,

then zi will be compared to zj

• this happens with probability
2

j − i + 1

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 30

Technische Universität München

Average Case Complexity of RandQuickSort
Expected Number of Comparisons:

T̄RQS(A) = E
[∑

i<j
Xij

]
=
∑

i<j
E
[
Xij
]

=
∑

i<j
Pr
[
zi is compared to zj

]
• suppose an element between zi and zj is chosen as pivot before

zi or zj are chosen as pivots; then zi and zj are never compared
• if either zi or zj is chosen as the first pivot in the range zi , . . . , zj ,

then zi will be compared to zj
• this happens with probability

2
j − i + 1

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 30

Technische Universität München

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

T̄RQS(A) =
n−1∑
i=1

n∑
j=i+1

1
j − i + 1

=
n−1∑
i=1

n−i+1∑
k=2

1
k

≤ 2
n∑

i=1

n∑
k=1

1
k

= 2nHn

= O(n log n)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 31

Technische Universität München

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

T̄RQS(A) =
n−1∑
i=1

n∑
j=i+1

1
j − i + 1

=
n−1∑
i=1

n−i+1∑
k=2

1
k

≤ 2
n∑

i=1

n∑
k=1

1
k

= 2nHn

= O(n log n)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 31

Technische Universität München

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

T̄RQS(A) =
n−1∑
i=1

n∑
j=i+1

1
j − i + 1

=
n−1∑
i=1

n−i+1∑
k=2

1
k

≤ 2
n∑

i=1

n∑
k=1

1
k

= 2nHn

= O(n log n)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 31

Technische Universität München

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

T̄RQS(A) =
n−1∑
i=1

n∑
j=i+1

1
j − i + 1

=
n−1∑
i=1

n−i+1∑
k=2

1
k

≤ 2
n∑

i=1

n∑
k=1

1
k

= 2nHn

= O(n log n)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 31

Technische Universität München

Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

T̄RQS(A) =
n−1∑
i=1

n∑
j=i+1

1
j − i + 1

=
n−1∑
i=1

n−i+1∑
k=2

1
k

≤ 2
n∑

i=1

n∑
k=1

1
k

= 2nHn

= O(n log n)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 31

Technische Universität München

Part III

Outlook: Optimality of
Comparison Sorts

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 32

Technische Universität München

Are Mergesort and Quicksort optimal?

Definition

Comparison sorts are sorting algorithms that use only comparisons
(i.e. tests as ≤,=, >, . . .) to determine the relative order of the
elements.

Examples:
• InsertSort, BubbleSort
• MergeSort, (Randomised) Quicksort

Question:
Is T (n) ∈ Θ(n log n) the best we can get (in the worst/average case)?

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 33

Technische Universität München

Decision Trees

Definition

A decision tree is a binary tree in which each internal node is
annotated by a comparison of two elements.
The leaves of the decision tree are annotated by the respective
permutations that will put an input sequence into sorted order.

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 34

Technische Universität München

Decision Trees – Properties

Each comparison sort can be represented by a decision tree:
• a path through the tree represents a sequence of comparisons
• sequence of comparisons depends on results of comparisons
• can be pretty complicated for Mergesort, Quicksort, . . .

A decision tree can be used as a comparison sort:
• if every possible permutation is annotated to at least one leaf of

the tree!
• if (as a result) the decision tree has at least n! (distinct) leaves.

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 35

Technische Universität München

A Lower Complexity Bound for Comparison Sorts

• A binary tree of height h (h the length of the longest path) has at
most 2h leaves.

• To sort n elements, the decision tree needs n! leaves.

Theorem

Any decision tree that sorts n elements has height Ω(n log n).

Proof:
• h comparisons in the worst case are equivalent to a decision tree

of height h
• with h comparisons, we can sort n elements (at best), if

n! ≤ 2h ⇔ h ≥ log(n!) ∈ Ω(n log n)

• because:
h ≥ log(n!) ≥ log

(
nn/2

)
=

n
2

log n

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 36

Technische Universität München

Optimality of Mergesort and Quicksort

Corollaries:
• MergeSort is an optimal comparison sort in the worst/average

case
• QuickSort is an optimal comparison sort in the average case

Consequences and Alternatives:
• comparison sorts can be faster than MergeSort, but only by a

constant factor
• comparison sorts can not be asymptotically faster
• sorting algorithms might be faster, if they can exploit additional

information on the size of elements
• examples: BucketSort, CountingSort, RadixSort

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 37

Technische Universität München

Part IV

Bucket Sort – Sorting Beyond
“Comparison Only”

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 38

Technische Universität München

Bucket Sort

Basic Ideas and Assumptions:
• pre-sort numbers in buckets that contain all numbers within a

certain interval
• hope (assume) that input elements are evenly distributed and

thus uniformly distributed to buckets
• sort buckets and concatenate them

Requires “Buckets”:
• can hold arbitrary numbers of elements
• can insert elements efficiently: in O(1) time
• can concatenate buckets efficiently: in O(1) time
• remark: linked lists will do

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 39

Technische Universität München

Implementation of BucketSort

BucketSort (A:Array[1..n]) {

Create Array B[0..n−1] of Buckets;
// assume all Buckets B[i] are empty at first

for i from 1 to n do {
insert A[i] into Bucket B[floor(n ∗ A[i])];

}

for i from 0 to n−1 do {
sort Bucket B[i] ;

}

concatenate Buckets B[0], B[1], ..., B[n−1] into A
}

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 40

Technische Universität München

Number of Operations of BucketSort

Operations:
• n operations to distribute n elements to buckets
• plus effort to sort all buckets

Best Case:
• if each bucket gets 1 element, then Θ(n) operations are required

Worst Case:
• if one bucket gets all elements, then T (n) is determined by the

sorting algorithm for the buckets

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 41

Technische Universität München

Number of Operations of BucketSort

Operations:
• n operations to distribute n elements to buckets
• plus effort to sort all buckets

Best Case:
• if each bucket gets 1 element, then Θ(n) operations are required

Worst Case:
• if one bucket gets all elements, then T (n) is determined by the

sorting algorithm for the buckets

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 41

Technische Universität München

Number of Operations of BucketSort

Operations:
• n operations to distribute n elements to buckets
• plus effort to sort all buckets

Best Case:
• if each bucket gets 1 element, then Θ(n) operations are required

Worst Case:
• if one bucket gets all elements, then T (n) is determined by the

sorting algorithm for the buckets

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 41

Technische Universität München

Bucketsort – Average Case Analysis

• probability that bucket i contains k elements:

P(ni = k) =
(n

k

)(1
n

)k (
1− 1

n

)n−k

• expected mean and variance for such a distribution:

E [ni] = n · 1
n

= 1 Var[ni] = n · 1
n

(
1− 1

n

)
=

(
1− 1

n

)
• InsertionSort for buckets⇒ ≤ cn2 ∈ O(n2

i) operations per bucket
• expected operations to sort one bucket:

T̄ (ni) ≤
n−1∑
k=0

P(ni = k) · ck2 = cE [n2
i]

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 42

Technische Universität München

Bucketsort – Average Case Analysis (2)

• theorem from statistics:

E [X 2] = E [X]2 + Var(X)

• expected operations to sort one bucket:

T̄ (ni) ≤ cE [n2
i] = c

(
E [ni]

2 + Var[ni]
)

= c
(

12 + 1− 1
n

)
∈ Θ(1)

• expected operations to sort all buckets:

T̄ (n) =
n−1∑
i=0

T̄ (ni) ≤ c
n−1∑
i=0

(
2− 1

n

)
∈ Θ(n)

(note: expected value of the sum is the sum of expected values)

J. Kretinsky: Fundamental Algorithms

Chapter 2: Sorting, Winter 2017/18 43

	Simple Sorts
	Mergesort and Quicksort
	Outlook: Optimality of Comparison Sorts
	Bucket Sort – Sorting Beyond ``Comparison Only''

