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The Sorting Problem

Definition
Sorting is required to order a given sequence of elements, or more
precisely:

Input : a sequence of nelements ay, ay, ..., a,

Output : a permutation (reordering) &, a, . .., &, of the input
sequence, suchthat &) < a, <-.-- < a,,.

~

o we will assume the elements ay, ao, . . ., a, to be integers
(or any element/data type on which a total order < is defined)

¢ a sorting algorithm may output the permuted data or also the
permuted set of indices
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Insertion Sort

Idea: sorting by inserting
e successively generate ordered sequences of the first j numbers:
j=1,j=2,....j=n
e in each step, j — j + 1, one additional integer has to be inserted
into an already ordered sequence

Data Structures:
e an array A[1..n] that contains the sequence ay (in A[1]), ..., a,
(in A[n]).
e numbers are sorted in place:

output sequence will be stored in A itself
(hence, content of A is changed)
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Insertion Sort — Implementation

InsertionSort (A:Array[1..n]) {

for j from2ton {
/I insert A[j] into sequence A[1..j—1]

key == AljI;
i :=j—1; // initialize i for while loop
while i>=1 and A[i]>key {

Ali+1] == A[i ];

= i1

}
Ali+1] = key;
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Correctness of InsertionSort

Loop invariant:

Before each iteration of the for-loop, the subarray A[1..j-1] consists of
all elements originally in A[1..j-1], but in sorted order.

Initialization:

o loops starts with j=2;
hence, A[1..j-1] consists of the element A[1] only

e A[1] contains only one element, A[1], and is therefore sorted.
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Correctness of InsertionSort

Loop invariant:

Before each iteration of the for-loop, the subarray A[1..j-1] consists of
all elements originally in A[1..j-1], but in sorted order.

Maintenance:
o assume that the while loop works correctly
(or prove this using an additional loop invariant):
o after the while loop, i contains the largest index for which A[i]
is smaller than the key
e Ali+2..j] contains the (sorted) elements previously stored in
Ali+1..j-1]; also: Afi+1] and all elements in A[i+2..j] are > key
o the key value, A[j], is thus correctly inserted as element A[i+1]
(overwrites the duplicate value Afi+1])
o after execution of the loop body, A[1..j] is sorted

o thus, before the next iteration (j:=j+1), A[1..j-1] is sorted
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Correctness of InsertionSort

Loop invariant:

Before each iteration of the for-loop, the subarray A[1..j-1] consists of
all elements originally in A[1..j-1], but in sorted order.

Termination:
o The for-loop terminates when j exceeds n (i.e., j=n+1)

e Thus, at termination, A[1 .. (n+1)-1] = A[1..n] is sorted and
contains all original elements
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Insertion Sort — Number of Comparisons

InsertionSort (A:Array[1..n]) {

for | from2ton { n-1 iterations
key := A[j ;
i=j—1;
while i>=1 and A[i]>key { t; iterations
Ali+1] == A[i ]; — ; comparisons
i=i-1; Ali] > key
}
Afi+1] = key; 5
} = Yt comparisons
} =2
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Insertion Sort — Number of Comparisons (2)

n
« counted number of comparisons: Tis = > {;
j=2

e where t; is the number of iterations of the while loop
(which is, of course, unknown)

e good estimate for the run time, if the comparison is the most
expensive operation (note: replace “i>=1" by for loop)

Analysis
e what is the “best case”?
e what is the “worst case”?
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Insertion Sort — Number of Comparisons (2)

n
« counted number of comparisons: Tis = > {;
j=2
e where t; is the number of iterations of the while loop
(which is, of course, unknown)

e good estimate for the run time, if the comparison is the most
expensive operation (note: replace “i>=1" by for loop)

Analysis of the “best case”:
e in the best case, t; = 1 for all

e happens only, if A[1..n] is already sorted
n

= Tis(n)=> 1=n-1¢€0(n)
j=2
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Insertion Sort — Number of Comparisons (2)

n
« counted number of comparisons: Tis = > {;
j=2

e where t; is the number of iterations of the while loop
(which is, of course, unknown)

e good estimate for the run time, if the comparison is the most
expensive operation (note: replace “i>=1" by for loop)

Analysis of the “worst case”:
e inthe worst case, t; = j — 1 forall j
e happens, if A[1..n] is already sorted in opposite order

= Tis(n 2(1—1 ~n(n—1) € 0(n?)
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Insertion Sort — Number of Comparisons (2)

n
« counted number of comparisons: Tis = > {;
j=2

e where t; is the number of iterations of the while loop
(which is, of course, unknown)

e good estimate for the run time, if the comparison is the most
expensive operation (note: replace “i>=1" by for loop)

Analysis of the “average case”:
e best case analysis: Tis(n) € ©(n)
 worst case analysis: Tig(n) € ©(n?)
= What will be the "typical”’ (average, expected) case?
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Running Time and Complexity

“Run(ning )Time”
o the notation T(n) suggest a “time”, such as run(ning) time of an
algorithm, which depends on the input (size) n
e in practice: we need a precise model how long each operation of
our programmes takes — very difficult on real hardware!
o we will therefore determine the number of operations that
determine the run time, such as:
— number of comparisons (sorting, €.g.)
— number of arithmetic operations (Fibonacci, e.g.)
— number of memory accesses
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Running Time and Complexity

“Run(ning )Time”
o the notation T(n) suggest a “time”, such as run(ning) time of an
algorithm, which depends on the input (size) n

e in practice: we need a precise model how long each operation of
our programmes takes — very difficult on real hardware!

o we will therefore determine the number of operations that
determine the run time, such as:

— number of comparisons (sorting, €.g.)
— number of arithmetic operations (Fibonacci, e.g.)
— number of memory accesses

“Complexity”

o characterises how the run time depends on the input (size),
typically expressed in terms of the ©-notation

o “algorithm xyz has linear complexity” — run time is ©(n)
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Average Case Complexity

Definition (expected running time)

Let X(n) be the set of all possible input sequences of length n, and let
P: X(n) — [0, 1] be a probability function such that P(x) is the
probability that the input sequence is x.

Then, we define
= > P(x)T(x)

xeX(n)

as the expected running time of the algorithm.

Comments:
e we require an exact probability distribution
(for InsertionSort, we could assume that all possible sequences
have the same probability)
e we need to be able to determine T(x) for any sequence x
(usually much too laborious to determine)
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Average Case Complexity of Insertion Sort

Heuristic estimate:
o we assume that we need £ steps in every iteration:

- 7
= Tis(n) & é—ZZ/e@
j=
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Average Case Complexity of Insertion Sort

Heuristic estimate:
o we assume that we need £ steps in every iteration:
— 7 j n >
:>T|s()zl 53 Z;/ee(n

* note: £ isn't even an integer ...
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Average Case Complexity of Insertion Sort

Heuristic estimate:
o we assume that we need £ steps in every iteration:

n
7 O/ _ ; 2
=>T|s()~ 5" Z/e@(n)
j= =2
* note: £ isn't even an integer ...

¢ Just considering the number of comparisons of the
“average case” can lead to quite wrong results!

in general E(T(n)) # T(“E(n)”)

J. Kretinsky: Fundamental Algorithms
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Bubble Sort

BubbleSort(A:Array[1..n]) {
for i from 1tondo {
for j from n downto i+1 do {
if A[j] <A[j-1]
then exchange A[j] and A[j—1]
}
}
}

Basic ideas:
e compare neighboring elements only
o exchange values if they are not in sorted order
o repeat until array is sorted (here: pessimistic loop choice)

J. Kretinsky: Fundamental Algorithms
Chapter 2: Sorting, Winter 2017/18



Technische Universitit Miinchen

Bubble Sort - Homework

Prove correctness of Bubble Sort:
¢ find invariant for i-loop
o find invariant for j-loop

Number of comparisons in Bubble Sort:
o best/worst/average case?
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Mergesort and Quicksort
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Mergesort

Basic Idea: divide and conquer

o Divide the problem into two (or more) subproblems:
— split the array into two arrays of equal size

e Conquer the subproblems by solving them recursively:
— sort both arrays using the sorting algorithm

o Combine the solutions of the subproblems:
— merge the two sorted arrays to produce the entire sorted array

J. Kretinsky: Fundamental Algorithms
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Combining Two Sorted Arrays: Merge

Merge (L:Array[1..p], R:Array[1..q], A:Array[1..n]) {
/I merge the sorted arrays L and R into A (sorted)
/I we presume that n=p+q
i=1; j:=1:
for k from 1 to n do {
if i >p
then { Akl:=R[j|; j=j+1; }
else if j >q
then { A[K]:==L[i]; i=i+1;}
else if L[i] < RIj]
then { AK]:=L[i]; i=i+1;}
else { Akl:=R[j]; j:=j+1;}

J. Kretinsky: Fundamental Algorithms
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Correctness and Run Time of Merge

Loop invariant:
Before each cycle of the for loop:
e A has the k-1 smallest elements of L and R already merged,
(i.e. in sorted order and at indices 1, ..., k-1);

e L[i] and R][j] are the smallest elements of L and R that have not
been copied to A yet
(i.e. L[1..i-1] and R[1..j-1] have been merged to A)

Run time:
TMerge(n) € @(n)

o for loop will be executed exactly ntimes

e each loop contains constant number of commands:
o exactly 1 copy statement
o exactly 1 increment statement
e 1-3 comparisons

J. Kretinsky: Fundamental Algorithms
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MergeSort

MergeSort(A:Array[1..n]) {
if n > 1 then {
m := floor(n/2);
create array L [1... m];
for i from1tomdo {L[i] := A[i]; }

create array R[1...n—m];
for i from 1 to n—m do { R][i] := A[m+i]; }

MergeSort(L);
MergeSort(R);

Merge(L,R,A);

J. Kretinsky: Fundamental Algorithms
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Number of Comparisons in MergeSort

o Merge performs exactly n element copies on n elements
o Merge performs at most ¢ - n comparisons on n elements

o MergeSort itself does not contain any comparisons between
elements; all comparisons done in Merge

= number of element-copy operations for the entire MergeSort
algorithms can be specified by a recurrence
(includes n copy operations for splitting the arrays):

Cus(m) = {cMS(L 1))+ Gus (- [3)) +2n 1 02

= number of comparisons for the entire MergeSort algorithm:

0 if n<i
TMS(”)S{ Tus (|2]) + Tws (n— |2]) +cn if n>2

J. Kretinsky: Fundamental Algorithms
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Number of Comparisons in MergeSort (2)

Assume n = 2, ¢ constant:

Tus(2¥)

IN

Tus <2k_1) + Tus (2"_1) +c-2k
2Tys (24°1) +2%c

IN
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Number of Comparisons in MergeSort (2)

Assume n = 2, ¢ constant:

TMS(2K) < Tus <2k_1) + Tus (Zk_1> +c-2k
< 2Tys (2k71) + 2Fc
< 22Tys (2k—2) 2.2k ¢4 2ke
<
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Number of Comparisons in MergeSort (2)

Assume n = 2, ¢ constant:

Tus(2¥)

ININ A

IAIA

IN

Tus <2k_1) + Tus (Zk_1> +cC- ok
2Tys (24°1) +2%c

22T (2k—2) L 2.2k 1¢c4 ok

2K Tys (2°) + 2" . 2'c+ ...+ 2/ . 2k¢

+...42. 2k ¢ 2k¢
k
> 2f¢=ck 2" = cnlog, n € O(nlog n)
=1
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Quicksort

Basic Idea: divide and conquer
e Divide the input array A[p..r] into parts A[p..q] and A[g+1 .. 1],
such that every element in A[g+1 .. r] is larger than all elements
in Alp .. q].
e Conquer: sort the two arrays A[p..q] and A[g+1 .. 1]
o Combine: if the divide and conquer steps are performed in
place, then no further combination step is required.

J. Kretinsky: Fundamental Algorithms
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Quicksort

Basic Idea: divide and conquer

e Divide the input array A[p..r] into parts A[p..q] and A[g+1 .. 1],
such that every element in A[g+1 .. r] is larger than all elements
in Alp .. q].

e Conquer: sort the two arrays A[p..q] and A[g+1 .. 1]

o Combine: if the divide and conquer steps are performed in
place, then no further combination step is required.

Partitioning using a pivot element:
o all elements that are smaller than the pivot element should go
into the “smaller” partition (A[p..q])
o all elements that are larger than the pivot element should go into
the “larger” partition (A[g+1..r])
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Partitioning the Array (Hoare’s Algorithm)

Partition (A:Array[p..r]) : Integer {
/I x is the pivot (chosen as first element):
x = Alp];
/I partitions grow towards each other
i == p—1;j = r+1; // (partition boundaries)
while true do { / i<j: partitions haven’'t met yet
/I leave large elements in right partition
do { j:=j—1; } while A[j]>x;
/I leave small elements in left partition
do { i:=i+1; } while A[i]l<x;
/I swap the two first "wrong” elements
if i <j
then exchange A[i] and A[j];
else return j;
}
}

J. Kretinsky: Fundamental Algorithms
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Time Complexity of Partition

How many statements are executed by the nested while loops?
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Time Complexity of Partition

How many statements are executed by the nested while loops?
e monitor increments/decrements of i and j

o after n:= r — pincrements/decrements, i and j have the same
value

= ©(n) comparisons with the pivot
= O(n) element exchanges

Hence: Tpari(n) € ©(N)

J. Kretinsky: Fundamental Algorithms
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Implementation of QuickSort

QuickSort (A:Array[p..r])
{

if p>=r then return;

/I only proceed, if A has at least 2 elements:

q := Partition (A);
QuickSort (Alp..q]);
QuickSort (A[g+1..r ]);

Homework:
e prove correctness of Partition
e prove correctness of QuickSort

J. Kretinsky: Fundamental Algorithms
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Time Complexity of QuickSort
Best Case:

e assume that all partitions are split exactly into two halves:

n

T8&(n) = 2788 (3

) +e(n)
¢ analogous to MergeSort:

T&SY(n) € ©(nlog n)
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Time Complexity of QuickSort

Best Case:
e assume that all partitions are split exactly into two halves:

T T n
¢ analogous to MergeSort:

T&SY(n) € ©(nlog n)

Worst Case:
o Partition will always produce one partition with only 1 element:

TAn) = TAZ(n— 1)+ TA (1) + ©(n)
= T (n—1)+06(n) =T (n—-2) +6(n— 1) +6(n)
= .=0(1)+...+0(n—1)+06(n) € O(P)
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Time Complexity of QuickSort — Special Cases?

What happens if:
e Ais already sorted?
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Time Complexity of QuickSort — Special Cases?

What happens if:

e Ais already sorted?
— partition sizes always 1 and n-1 = ©(n?)
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Time Complexity of QuickSort — Special Cases?

What happens if:

e Ais already sorted?
— partition sizes always 1 and n-1 = ©(n?)

e Ais sorted in reverse order?
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Time Complexity of QuickSort — Special Cases?

What happens if:

e Ais already sorted?
— partition sizes always 1 and n-1 = ©(n?)

e Ais sorted in reverse order?
— partition sizes always 1 and n-1 = ©(n?)
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Time Complexity of QuickSort — Special Cases?

What happens if:

e Ais already sorted?
— partition sizes always 1 and n-1 = ©(n?)

e Ais sorted in reverse order?
— partition sizes always 1 and n-1 = ©(n?)

e one partition has always at most a elements (for a fixed a)?
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Time Complexity of QuickSort — Special Cases?

What happens if:

e Ais already sorted?

— partition sizes always 1 and n-1 = ©(n?)
e Ais sorted in reverse order?

— partition sizes always 1 and n-1 = ©(n?)

e one partition has always at most a elements (for a fixed a)?
— same complexity as a =1 = ©(n?)

J. Kretinsky: Fundamental Algorithms
Chapter 2: Sorting, Winter 2017/18 26



Te i Universitat Mii TI-ITI

Time Complexity of QuickSort — Special Cases?

What happens if:

e Ais already sorted?
— partition sizes always 1 and n-1 = ©(n?)

e Ais sorted in reverse order?
— partition sizes always 1 and n-1 = ©(n?)

e one partition has always at most a elements (for a fixed a)?
— same complexity as a =1 = ©(n?)

e partition sizes are always n(1 — a) and nawith0 < a < 1?
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Time Complexity of QuickSort — Special Cases?

What happens if:
e Ais already sorted?
—» partition sizes always 1 and n-1 = ©(n?)
e Alis sorted in reverse order?
— partition sizes always 1 and n-1 = ©(n?)

e one partition has always at most a elements (for a fixed a)?
— same complexity as a =1 = ©(n?)

e partition sizes are always n(1 — a) and nawith0 < a < 1?
— same complexity as best case = ©(nlog n)
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Time Complexity of QuickSort — Special Cases?

What happens if:

e Ais already sorted?
— partition sizes always 1 and n-1 = ©(n?)

e Ais sorted in reverse order?
— partition sizes always 1 and n-1 = ©(n?)

e one partition has always at most a elements (for a fixed a)?
— same complexity as a =1 = ©(n?)

e partition sizes are always n(1 — a) and nawith0 < a < 1?
— same complexity as best case = ©(nlog n)

Questions:
o What happens in the “usual”’ case?
e Can we force the best case?

J. Kretinsky: Fundamental Algorithms
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Randomized QuickSort

RandPartition ( A: Array [p..r] ): Integer {
/I choose random integer i between p and r
i = rand(p,r);
/I make A[i] the (new) Pivot element:
exchange A[i] and A[p];
/[ call Partition with new pivot element
q = Partition (A);
return q;

}

RandQuickSort ( A:Array [p..r] ) {
if p >=rthen return;
g = RandPartition(A);
RandQuickSort (A[p...q));
RandQuickSort (A[g+1 ..r]);

}

J. Kretinsky: Fundamental Algorithms
Chapter 2: Sorting, Winter 2017/18
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Time Complexity of RandQuickSort

Best/Worst-case complexity?
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Time Complexity of RandQuickSort

Best/Worst-case complexity?
¢ RandQuickSort may still produce the worst (or best) partition in

each step
e worst case: O(n?)
e best case: ©(nlogn)
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Time Complexity of RandQuickSort

Best/Worst-case complexity?
¢ RandQuickSort may still produce the worst (or best) partition in
each step
e worst case: O(n?)
e best case: ©(nlogn)

However:
e it is not determined which input sequence (sorted order, reverse
order) will lead to worst case behavior (or best case behavior);
e any input sequence might lead to the worst case or the best
case, depending on the random choice of pivot elements.

Thus: only the average-case complexity is of interest!
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Average Case Complexity of RandQuickSort

Assumptions:

» we compute Tras (A),
i.e., the expected run time of RandQuickSort for a given input A

e rand(p,r) will return uniformly distributed random numbers
(all pivot elements have the same probability)

o all elements of A have different size: A[i] # A[j]
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Average Case Complexity of RandQuickSort

Assumptions:

» we compute Tras (A),
i.e., the expected run time of RandQuickSort for a given input A

e rand(p,r) will return uniformly distributed random numbers
(all pivot elements have the same probability)

o all elements of A have different size: A[i] # A[j]

Basic Idea:
¢ only count number of comparisons between elements of A
e let z; be the i-th smallest element in A

e define
X — 1z is compared to z;
v 0 otherwise

e random variable Tras(A) = >_,; X

J. Kretinsky: Fundamental Algorithms
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Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

Tras(A) = E [Z )(I:|

i<j

J. Kretinsky: Fundamental Algorithms
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Average Case Complexity of RandQuickSort

Expected Number of Comparisons:
Tras(A) = E [qu )(I:|
=>_.EX]
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Average Case Complexity of RandQuickSort
Expected Number of Comparisons:
Tras(A) = E [qu )(I:|
=>_,EX]

= Zi<j Pr [z is compared to z]
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Average Case Complexity of RandQuickSort
Expected Number of Comparisons:
Tras(A) = E [qu )(I:|
=>_,EX]

= Zi<j Pr [z is compared to z]

e suppose an element between z; and z; is chosen as pivot before
z; or zj are chosen as pivots; then z; and z; are never compared
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Average Case Complexity of RandQuickSort
Expected Number of Comparisons:
Tras(A) = E [qu X/}
=>_,EX]

= Zi<j Pr [z is compared to z]

e suppose an element between z; and z; is chosen as pivot before
z; or zj are chosen as pivots; then z; and z; are never compared

o if either z; or z; is chosen as the first pivot in the range z;, .. ., z;,
then z; will be compared to z
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Average Case Complexity of RandQuickSort
Expected Number of Comparisons:
Tras(A) = E [qu X/}
=>_,EX]

= Zi<j Pr [z is compared to z]

e suppose an element between z; and z; is chosen as pivot before
z; or zj are chosen as pivots; then z; and z; are never compared
« if either z; or z; is chosen as the first pivot in the range z;, ..., z,
then z; will be compared to z
e this happens with probability
2

i
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Average Case Complexity of RandQuickSort

Expected Number of Comparisons:

_ n—1 n 1
Tras(A) =) > =i

i=1 j=i+1
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Average Case Complexity of RandQuickSort

Expected Number of Comparisons:
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Average Case Complexity of RandQuickSort

Expected Number of Comparisons:
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Average Case Complexity of RandQuickSort

Expected Number of Comparisons:
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Average Case Complexity of RandQuickSort

Expected Number of Comparisons:
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Part IlI

Outlook: Optimality of
Comparison Sorts

J. Kretinsky: Fundamental Algorithms
Chapter 2: Sorting, Winter 2017/18 32



Technische Universitit Miinchen TI-ITI

Are Mergesort and Quicksort optimal?

Definition
Comparison sorts are sorting algorithms that use only comparisons

(i.e. tests as <, =, >,...) to determine the relative order of the
elements.

Examples:
¢ InsertSort, BubbleSort
e MergeSort, (Randomised) Quicksort

Question:
Is T(n) € ©(nlog n) the best we can get (in the worst/average case)?
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Decision Trees

Definition

A decision tree is a binary tree in which each internal node is
annotated by a comparison of two elements.

The leaves of the decision tree are annotated by the respective
permutations that will put an input sequence into sorted order.

|(al,a3a2)
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Decision Trees — Properties

Each comparison sort can be represented by a decision tree:
¢ a path through the tree represents a sequence of comparisons
e sequence of comparisons depends on results of comparisons
e can be pretty complicated for Mergesort, Quicksort, ...

A decision tree can be used as a comparison sort:

o if every possible permutation is annotated to at least one leaf of
the tree!

o if (as a result) the decision tree has at least n! (distinct) leaves.
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A Lower Complexity Bound for Comparison Sorts

e A binary tree of height h (h the length of the longest path) has at
most 2/ leaves.

e To sort n elements, the decision tree needs n! leaves.

Theorem
Any decision tree that sorts n elements has height Q(nlog n).

Proof:

e h comparisons in the worst case are equivalent to a decision tree
of height h

e with h comparisons, we can sort n elements (at best), if
n<2" < h>log(n!) € Q(nlogn)

e because: n
h> log(n') > log (n”/z) =5 logn

J. Kretinsky: Fundamental Algorithms
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Optimality of Mergesort and Quicksort

Corollaries:

e MergeSort is an optimal comparison sort in the worst/average
case

e QuickSort is an optimal comparison sort in the average case

Consequences and Alternatives:

e comparison sorts can be faster than MergeSort, but only by a
constant factor

e comparison sorts can not be asymptotically faster

e sorting algorithms might be faster, if they can exploit additional
information on the size of elements

o examples: BucketSort, CountingSort, RadixSort
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Part IV

Bucket Sort — Sorting Beyond
“Comparison Only”
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Bucket Sort

Basic Ideas and Assumptions:

e pre-sort numbers in buckets that contain all numbers within a
certain interval

e hope (assume) that input elements are evenly distributed and
thus uniformly distributed to buckets

e sort buckets and concatenate them

Requires “Buckets”:
e can hold arbitrary numbers of elements
e can insert elements efficiently: in O(1) time
e can concatenate buckets efficiently: in O(1) time
o remark: linked lists will do

J. Kretinsky: Fundamental Algorithms
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Implementation of BucketSort

BucketSort (A:Array[1..n]) {

Create Array B[0..n—1] of Buckets;
/l'assume all Buckets BJ[i] are empty at first

for i from 1tondo {
insert A[i] into Bucket B[floor(n « A[i ])];
}

for i fromOton—1do{
sort Bucket BJi] ;
}

concatenate Buckets B[0], B[1], ..., B[n—1]into A
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Number of Operations of BucketSort

Operations:
e noperations to distribute n elements to buckets
e plus effort to sort all buckets
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Number of Operations of BucketSort

Operations:
e noperations to distribute n elements to buckets
¢ plus effort to sort all buckets

Best Case:
o if each bucket gets 1 element, then ©(n) operations are required
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Number of Operations of BucketSort

Operations:
e noperations to distribute n elements to buckets
¢ plus effort to sort all buckets

Best Case:
o if each bucket gets 1 element, then ©(n) operations are required

Worst Case:

o if one bucket gets all elements, then T(n) is determined by the
sorting algorithm for the buckets
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Bucketsort — Average Case Analysis

o probability that bucket / contains k elements:

- () (1-2)”

e expected mean and variance for such a distribution:

E[nf]:”':?:1 Var[”’]_"':v(1_:11>_(1_117>

« InsertionSort for buckets = < cn? € O(n?) operations per bucket
o expected operations to sort one bucket:

n—1

T(n) <> P(ni= k) - ck® = cE[n?]

k=0
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Bucketsort — Average Case Analysis (2)

e theorem from statistics:
E[X?] = E[X]? + Var(X)

o expected operations to sort one bucket:
7 1
T(n) < cElrf] = ¢ (E[n? + Var[n]) = c (12 f1o n) co(1)

o expected operations to sort all buckets:

n—1 n—1

T(n)=>Y T(m)<c) (2 - L) € ©(n)
i=0

i=0

(note: expected value of the sum is the sum of expected values)

J. Kretinsky: Fundamental Algorithms
Chapter 2: Sorting, Winter 2017/18

43



	Simple Sorts
	Mergesort and Quicksort
	Outlook: Optimality of Comparison Sorts
	Bucket Sort – Sorting Beyond ``Comparison Only''

